Mini-excavator up to 6 tons

True size matters the tighter the construction site is: The mini-excavators from Wacker Neuson.

1. Uncompromising economic efficiency.

Our finely tiered mini-excavator product range offers the ideal machine for your individual needs. All Wacker Neuson miniexcavators are particularly robust, powerful and easy to operate. A variety of attachments increases your application areas and makes the machines even more economical.

2. "Made in Austria" reliability.

All professional disciplines are combined in our plant in Hörsching near Linz: Research and development, procurement, product management, prototype construction, design, quality assurance and production. That's how we achieve the highest quality - made in Austria.

3. Your success in focus.

Our cooperation first begins as soon as you have chosen an excavator from Wacker Neuson. You have access to numerous services and service packages, because we want to ensure maximum machine availability for you. That is our promise to vou!

Wacker Neuson-all it takes!

We offer products and services rendered that meet your high requirements and diverse applications. Wacker Neuson stands for reliability. This of course also applies to our extensive product range of mini-excavators. We do our best every day to ensure your success. And we do this full of passion for our jobs.

Excavator expertise down to the last detail.

Efficiency

- Vertical Digging System (VDS): More productivity on every unevenness
- Telescopic travel gear: Narrow for tight passages, wide for high stability
- Lifting lugs on the cabin roof for easy displacement or loading
- Zero Tail: Minimized rear projection
- Compact dimensions for a guick change in the application location

Maintenance

- Optimal service accesses save time and money during maintenance
- Long service life thanks to the highquality components and processes

All mini-excavators up to 6 metric tons from this brochure in overview.

Compact and wheeled excavators 6 to 15 metric tons.

(More information in the brochure "Compact and wheeled excavators" or at www.wackerneuson.com)

5,806-6,682 kg

EZ80

8,348-9,625 kg

ET145

14,917-15,701 kg

7,588-8,877 kg

02

Versatility

- Control circuits (AUX I-V): Up to 5 auxiliary control circuits ex work
- High machine utilization due to numerous attachments ex work
- Customer colors: If desired, we also paint in special colors
- Innovative front windshield system for optimal ventilation in any weather

Safety

- Intuitive operation, e.g. via joystick
- Ergonomic cabin: with many setting options
- Very good view of the work area
- Telematics solution EquipCare for ideal overview
- Active Working Signal for greater safety

3,817-4,609 kg > Page 38

4,617-5,454 kg > Page 38

4,817-5,630 kg > Page 38

6,472-7,720 kg

9,241-10,461 kg

EZ17e

Whether battery-operated or on the power grid: Any energy source (110 – 415 volts) can be used for charging

Zero Tail: optimum work totally without rear projection in confined spaces

Ideal for application in noisesensitive or emissions-restricted areas

Fully electric and full performance: The electric Zero Tail mini-excavator EZ17e.

	EZITE
Shipping weight (kg)	1,681
Digging depth with short and long dipper stick (mm)	2,323/2,483
Battery output (kWh)	23.4

example on the canopy. ** CO₂ emissions over the entire service life, direct and indirect, thus including battery production and energy generation (EU mix), compared with a conventional product of the

06

Easy-to-remove canopy

for low overhead clearances in interior spaces

7-inch color display and Jog Dial system for simple and intuitive operation

> Extremely low noise emissions of 70 decibels, which is the equivalent of a running faucet*

No rear projection, for work directly along house walls and boundaries

23.4 kWh strong and maintenancefree lithium-ion battery

with long service life and outstanding performance

Goodbye to limitations: the emission-free construction site

The EZ17e is our first fully electric mini-excavator. With it, our vision of the emission-free construction site has become a reality, because with the zero emission products by Wacker Neuson, you can now operate an entire construction site.

For example, think of a construction site in the middle of the city, the conversion of a hospital or work at the zoo. Here, our zero emission products come into use. The acquisition pays off economically as well, as with electric machines and devices, you are already far ahead with tenders in the environments mentioned.

- Emission-free and low-noise working on the entire construction site
- With 70 decibels, the EZ17e is as quiet as a running faucet*
- The EZ17e saves over 80% CO₂: Good for the environment and the operator* * See page 06.

No rear projection, no matter how you turn it.

The Zero Tail mini-excavator EZ17e is not just emission-free, it manages completely without a rear projection. With this, it can be used for work along walls or other narrow surroundings. At no time does the rear project over the undercarriage.

This is possible as all components, from battery to electric motor all the way to the cooling system are housed in the installation space.

Reduced maintenance and service costs.

No battery maintenance necessaryElimination of the typical maintenance work of

- conventional machines, such as changing the engine oil and filterReduced costs for service materials
- (e.g. air filters or engine oil filters are not necessary)
- Maximum machine availability

Battery system specially designed by Wacker Neuson.

- Modern lithium-ion battery with 23.4 kWh capacity
- Extremely high battery service life
- Charging independent of the ambient temperature due to integrated battery heater
- Performance of the hydraulic functions as on conventional models
- Battery capacity for an average workday
- 36 months plant warranty in conjunction with EquipCare on the machine incl. battery^{*}
- * All details at your dealer or distributor

803

The highest engine output in its class: Low-consumption 3-cylinder engine and standard auxiliary hydraulics, ideal for breaker operations

Dual power for emission-free working: Simply connect the electro- hydraulic power unit and continue to work with the same performance

Fold-over ROPS bar and telescopic travel gear for optimal access to particularly tight construction sites

Smalles model - also works in zero emission mode: The mini-excavator 803.

	803
Shipping weight (kg)	930-992
Digging depth with short dipper stick (mm)	1,763
Engine output (kW)	9.9

803

Expand your possibilities.

engine, the tracked excavators can be operated emission-free via an electro-hydraulic power unit. This is ideal, for example, in enclosed spaces or in urban areas. To bring it to the dozer blade of the excavator.

The fold-over dozer blade extension always remains connected to the unit and never gets lost

dualpower (optional) connection option for a power unit for emission-free work

As wide and tall as you need.

The width can be adapted as necessary with the hydraulic telescopic travel gear and the fold-over dozer blade extension: from 700 mm for tight passages to 860 mm for a high level of stability. In the process, the elements for the dozer blade extension always remain connected to the unit. If you need to drive through a door, the ROPS bar can also be folded down.

ET16

Most powerful drive system of its class, combined with LUDV hydraulic system for maximum performance and precise controllability, regardless of the load to be moved

CKER JSON

·E

Large cabin with a skylight and split front windshield for the best all-round visibility

Quick change of job site with easy transport on a < 3.5 metric ton trailer

Moving large items in a small space: The compact mini-excavator ET16.

	ET16
Shipping weight (kg)	1,402-1,602
Digging depth with short and long dipper stick (mm)	2,242-2,413
Engine output (kW)	13.8

Perfectly motorized.

The ET16 is equipped with a second travel speed level as a standard. In this way, you can quickly switch positions on the construction site at up to 4 km/h and save valuable time.

The ET16 has one of the largest cabins of its class with extra-large footroom, large entry, heater, individual adjustment of seat and armrests, as well as very good 360° visibility.

Easy transport on a <3.5-ton car trailer:

thanks to the compact dimensions and low weight, other attachments can be transported in addition to the fully fueled machine.

to the large rear engine hood and removable floor plate in the cabin

The most powerful drive of its class

the cabin - preparation for hydraulic quick hitch system (optional)

Optional telescopic travel gear (990-1,300 mm) with fold-over dozer blade extension for a high level of flexibility in narrow construction site entrances and stability while working

Delicate control with load-sending hydraulics.

The load sensing hydraulic system LUDV (Loadindependent flow distribution) allows for the delicate fatigue-free control of the excavator. The machine automatically adapts to the load, whereby the joystick movements always remain the same for the operator to ensure more precise work and optimal results.

Powerful diesel engine and optimally matched hydraulics (LUDV) ensure excellent digging power and sensitive control EZI7

Up to 4 auxiliary control circuits for maximum flexibility and time savings

Lifting points on the roof for easy displacement

Compact, powerful, maneuverable: The Zero Tail mini-excavator EZ17.

	EZI7
Shipping weight (kg)	1,595-1,822
Digging depth with short and long dipper stick (mm)	2,326-2,486
Engine output (kW)	13.8

EZ17

High thermal resistance: no losses in performance, even at high temperatures

Simple disassembly of the canopy for low clearances and optimal maintenance access

100% Zero Tail:

no rear projection, ideal for work directly against walls and boundaries Optimally protected neck and lifting arm cylinder on the top side of the boom

> Load-holding function and optional overload valves with hose burst protection

The best stability compared to other zero tail excavators due to an ideal machine center of gravity

> Solid steel construction, interchangeable steel bushings for durable, play-free bearing points

'n

EZT

Up to 4 auxiliary control circuits for easy operation of attachments such as swivel buckets or breakers – optionally with preparation for the hydraulic quick hitch system

Optimal maneuverability in tight spaces

due to the telescopic travel gear 990 - 1,300 mm, dozer blade extension

Maximum performance, perfectly metered.

The unique combination of the most powerful drive of its class and the innovative hydraulic system with LUDV (load-independent flow distribution) makes operation simpler and more efficient - even with heavy loads.

Ease of servicing taken "further."

Covers that can be removed with just a screwdriver make maintenance work easy, quick and favorably priced.

A further plus at maintenance is the extra-large engine hood. The cleaning of the radiator is also easy, because it is made entirely of aluminum and is therefore extremely sturdy.

Canopy with skylight: For a perfect view of the work area.

ET18 ET20 ET24

The ET18 impresses with the best overall performance in its class

to the

The ET20 impresses with the output of a 2-ton excavator with the compact dimensions of the 1.5-ton class. It also has an specially developed travel gear and arm system adapted for the 2-ton class

The ET24 is compact like the little guys, but powerful like a model in the 2.5-ton class

Three powerful models: The tracked excavators ET18, ET20 and ET24.

	ETIB	ET20	ET24
Shipping weight (kg)	1,582-2,060	1,862-2,182	2,057-2,401
Digging depth with short and long dipper stick (mm)	2,202-2,402	2,483-2,683	2,402-2,602
Engine output (kW)	13.8	13.8	13.8

ET18 ET20 ET24

2 lifting lugs to easily move the entire machine

Skylight for an optimal view upwards

WACKER

Easily disassemble the cabin or canopy, for example for low clearance heights

W

NEUSON

Overload valves with hose burst protection for more safety during lifting (optional)

High thermal resistance

allows for full load work during ambient

temperatures up to 45 degrees Celsius

Simple attachment change

from the cabin - preparation for hydraulic quick hitch system (optional)

Up to 4 auxiliary control circuits available ex work

Standard auxiliary hydraulics for simple operation of different attachments

.0

Flexible with little space and at the same time stable: Telescopic travel gear 990 - 1,300 mm with additional stabilizers and fold-over dozer blade extension (ET18 and ET20)

Easy and quick transport with a car trailer

VDS – infinitely variable superstructure tipping (available as an option)

Work fatigue-free through the individual adjustment of the seat, joystick position and armrests

Doors on both sides (optional) for easy entry and exit in confined construction sites or when directly against walls

Hydraulically pilot-operated gas pedals for comfortable and precise control without mechanical wear – hands remain free for other functions

Powerful diesel engine – optimal efficiency and performance, up to 30% higher forces

Sturdy aluminum radiator lasts for a long time and is easy to clean

Laterally raised cast bumper reduces damage to the rear

VDS: efficient on a slope.

Our innovative Vertical Digging System compensates for gradients of up to 27%. That pays off:

ALC: MARKING

- Up to 25% material and time savings when excavating and filling
- Safe work due to up to a 20% increase in stability at a 15-degree slope
- A good line-of-sight at all times, because the same swiveling power is ensured over 360 degrees
- Fatigue-free working due to familiar seat position

Sophisticated solutions for quick maintenance.

- Tipping seat console
- Wide opening engine hood
- Laterally removable covers
- Optimally positioned zerk fittings
- High time and money savings

Innovative windshield system.

The two-part front window allows for optimal ventilation in the cabin in any weather. In addition, it makes it easier to communicate with the operator. A separate removal and storage of the window is a thing of the past.

Closed front window - two glass windows keep water and wind out.

The upper front window can be pushed under the cabin roof. The lower pane serves as splash protection.

Hydraulically pilot controlled gas pedals make it possible to conveniently and precisely control without mechanical wear. Your hands remain free for other functions.

The lower windshield slides behind the upper window, making it ideal for talking with colleagues.

If necessary, both windows are pushed below the cabin roof where they are stored safely.

Individuality through variety.

Configure your perfect working unit and select, for example:

- Up to 4 auxiliary control units
- Long dozer blade
- Automatic RPM speed control
- 2nd cab door
- Overload warning device
- Proportional control of the auxiliary hydraulics with flow rate regulation (Potti)

Can be easily and cheaply

EZ26

transported on a passenger car trailer

2-3E

Comfort cabin with a wide entry and ergonomically adjustable operating and display elements for the greatest possible level of user friendliness

Quick, easy cost-saving maintenance access due to the large lateral engine hood and removable covers

Comfortable working conditions: The Zero Tail excavator EZ26.

	EZ26
Shipping weight (kg)	2,469-3,161
Digging depth with short and long dipper stick (mm)	2,544-2,744
Engine output (kW)	15.8

EZ26

The slanted travel gear box prevents dirt accumulation and is easy to clean The innovative two-part front windshield mechanism allows for various opening positions – for the greatest possible comfort and safety in any working situation.

Sophisticated solutions for quick and low-cost maintenance.

- Ideally reachable: Hydraulic and engine oil filter, air filter, water trap and tank filler point
 Easy to remove: Canopy or cabin
- Easy to replace: Bushings on stressed bearing points

Top maintenance access: The largest engine hood in its class

Transport pro:

- Less than 2.7 t shipping weight
- Can be transported on a car trailer
- Gain in range and additional fields of application
- Great cost savings

higher stability

and lift capacity

Work ergonomically with any body size thanks to an individually adjustable seat, joystick and armrest position, plenty of headroom and legroom and the best all-round visibility.

ET35 EZ36

Sophisticated drive concept for quick, precise control and shorter work cycles

All and the

The

High level of customization ex work due to numerous options, such as an hydraulic thumb, up to 4 auxiliary control circuits, and much more

Get in and start working: Intuitive operation of all excavator functions via joystick, display, Jog Dial and keypad

Trimmed for productivity: The tracked excavators ET35 and EZ36.

	ET35
Shipping weight (kg)	3,365-4,276
Digging depth with short and long dipper stick (mm)	3,245-3,497
Engine output – POWER mode (kW)	18.2

EZ**36** 3,530-4,446 3,247-3,497 18.2

ET35 EZ36

Long service life due to the time-tested and proven, heavy duty design

High thermal resistance: 100% performance at up to 45 degrees Celsius ambient temperature

Heavy duty bearing points and interchangeable bushings for a play-free arm system, even after many applications

"Hydraulic thumb" offers an additional gripping function (optional)

Optionally with rubber or steel tracks for all surfaces

ET35 EZ36

Maximum efficiency.

with floating position for more flexibility and efficiency.

dozer blade

Our excavators of the 3.5-ton class impress with many sophisticated detailed solutions, which increase productivity - from the intuitive operation to the quick maintenance. And the performance is also convincing, because an optimized engine-pump management ensures up to 15% faster working cycles. The Zero Tail excavator EZ36 is the ideal choice for frequently confined spaces, such as in horticulture and landscape construction, in urban areas or road construction. The conventional mini-excavator ET35 offers a particularly high level of stability, ideal for heavy loads, in small spaces.

When things get tight:

Swivel without danger, even in the tightest of spaces or directly next to a wall - it's no problem with the zero tail overhang excavator EZ36.

Infinitely variable swiveling EZ36.

Work comfortably: Large comfort cab with side sliding window and individual adjustment of the seat, armrests and joystick for ergonomic fatigue-free working.

Many individual options - all available ex work:

Infinitely variable superstructure tipping VDS.

The unique vertical digging system (optionally available) compensates for slopes of up to 27 percent, making it possible to vertically excavate on a slope. This is not only ergonomic for the driver, but it also saves time and excavated material.

EZ50 ET58 ET42

Very good performance due to high stability, high lift capacity and digging power as well as quick working cycles

Comfortable and fatigue-free joystick control thanks to Load Sensing Flow Sharing

Extremely productive working thanks to 3-point kinematics and bucket rotation angle expanded to 200 degrees

Excavating made easy: The excavators ET42, EZ50 and ET58.

F7

	ET42	EZ50	ET58
Shipping weight (kg)	3,817-4,609	4,617–5,454	4,817-5,630
Digging depth with short and long dipper stick (mm)	3,344-3,544	3,467-3,667	3,767-4,017
Engine output (kW/hp)	36/48.2	36/48.2	36/48.2

ET42 EZ50 ET58

AUX pressure release: Makes changing hydraulic attachments easier. Tools can also be coupled with the engine running

With the Vertical Digging System option, efficiency and productivity can be increased even more at the touch of a button (ET42, ET58)

Innovative front windshield system allows optimum ventilation of the cabin as well as easy communication with co-workers

High level of cabin comfort with very good ergonomics and climate control performance

°n

WACKER

Innovative thermal management increases the service life of the diesel engine and the cabin heater's degree of efficiency

Active Working Signal (AWS) signals to persons standing in the area that the excavator is in operation

40

Emission standard Stage V: For minimal pollutant emissions

Zero Tail: no rear projection, for work directly alongside house walls and boundaries (EZ50)

Exhaust system pointed upward increases safety for persons, reduces potential damage to objects and swirls up less dust, e.g. In trench construction

> Externally guided rollers give the machine a high level of stability

ET

Swiveling dozer blade with floating position for more efficient working

Load Sensing Flow Sharing allows precise control regardless of the load to be moved

Intuitive operation via joystick, display, Jog Dial and keypad

Piston rod protection made of plastic for lifting arm cylinders (standard) and for bucket - and for dipper stick cylinders (optional)

Up to six auxiliary control circuits (optional)

The best illumination and

long lifetimes with LED headlights (work lights optional)

Bluetooth hands-free system

(optional) and USB charging function for more comfort and safety

> The windshield wipers and their wiping direction are aligned so that no visibility restrictions are created for the operator

10 large tie-down lugs

ensure quick and easy lashing down, thus ensuring safe transport of the machine

ET42 EZ50 ET58

Always stay vertical: **The Vertical Digging System** for the ET42 and ET58.

Both the excavators ET42 and ET58 score points as standard with a big portion of innovation and operator-friendliness. With the Vertical Digging System (VDS) option, efficiency and productivity can be increased even more at the touch of a button.

For both these excavators, VDS means:

- 25% savings on materials and time when excavating and backfilling material
- Machine and entry height, as well as insertion depth, as on the models without VDS
- Full 360-degree swing power
- Fatigue-free working due to upright seat position

3-point kinematics for more performance.

An additional bolt in the rod linkage ensures a higher bucket rotation angle. Due to this, not only the torque but the range increases as well. This way, the excavator does not have to be turned as often. In numbers:

Active Working Signal for greater safety.

Thanks to the Active Working Signal (AWS) attached to the engine hood, co-workers on the construction site recognize whether the excavator is in operation. The AWS lights up red when the joystick mount is pressed down and the excavator is ready for use.

With Load Sensing Flow Sharing to precise work results.

Load Sensing Flow Sharing allows precise control regardless of the load to be moved. The machine adjusts to the load, and the joystick movements are always kept the same for the operator.

Versatile performer.

With up to six auxiliary control circuits and numerous new and time-tested and proven options, ET42, EZ50 and ET58 can be ideally adapted to individual requirements. Changing attachments is quick and comfortable - among other things, by a pressure release switch in the cabin and quick hitch system (optional).

Piston rod protection made of plastic does not become deformed and prevents damage (available for bucket and dipper stick cylinders

42

Vertical

+ 5%

More cabin comfort.

The intuitive operating concept makes it possible to fully control the excavator via joystick, 3.5-inch display, Jog Dial and keypad. This way, for example, attachments can be stored, auxiliary hydraulics controlled and oil levels set.

The powerful air-conditioning system, with outflow jets ideally placed, ensure pleasant and fatigue-free work. It can perform a cool-down of up to 16 degrees Celsius (at an ambient temperature of 38 degrees Celsius) - and in half the ISO standard time specified.

Configuration options

	arız	M	o 3 Jacpower	9		Ø	0 N	t N	256	IJ	9 E Z	U T	0 S	10 10
	Ŵ	۵	0 8	Ŵ	Ŵ	Ŵ	Ŵ	Ŵ	Ŵ	Ŵ	Ű	Ŵ	Ŵ	Ŵ
CABIN														
Cab	-	-	-	0	-	0	0	0	0	0	0	0	0	0
Canopy	•	-	-	•	•	•	•	•	•	•	•	•	•	•
FOPS protective grating level 1	0	-	-	0	0	0	0	0	-	-	-	0	0	0
Radio installation	-	-	-	-	-	0	0	0	•	•	•	•	•	•
Radio incl. Bluetooth hands-free system	-	-	-	-	-	-	-	-	0	0	0	0	0	0
Air-conditioning system	-	-	-	-	-	-	-	-	-	0	0	0	0	0
Shatter protection	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HYDRAULICS														
Auxiliary hydraulics dipper stick hose system	-	0	0	-	-	-	-	-	-	-	-	-	-	-
Auxiliary double-acting hydraulics/AUX I	•	0	0	•	•	•	•	•	•	•	•	•	•	•
Overload warning device Advanced	0	-	-	-	0	0	0	0	0	0	0	0	0	0
Proportional control, AUX I	-	-	-	-	-	0	0	0	0	•	•	•	•	•
3rd control circuit/AUX II	0	-	-	-	0	0	0	0	0	0	0	0	0	0
Panolin HLP Synt46 (Bio)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Flat-faced coupler	0	-	-	0	0	0	0	0	0	0	0	0	0	0
Flow control valve for aux. hydr./AUX I	0	-	-	-	0	0	0	0	0	0	0	0	0	0
Flow control valve 3rd control circ./AUX II	0	-	-	-	0	0	0	0	-	0	0	0	0	0
Preparation for Powertilt/AUX III	0	-	-	-	0	0	0	0	0	0	0	0	0	0
Preparation for Easy Lock/AUX IV	0	-	-	0	0	0	0	0	0	0	0	0	0	0
Preparation for grapple/AUX V	0	-	-	-	0	0	0	0	0	0	0	0	0	0
Control circuit, hydr. thumb/AUX VI	-	-	-	-	-	-	-	-	-	0	0	0	0	0
Pressure release for auxiliary control circuits	-	-	-	-	-	-	-	-	-	-	-	0	0	0
PAINT FINISH														
Special paint 1 RAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Custom paintwork 1 no RAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Special paint cab/canopy RAL	0	-	-	0	0	0	0	0	0	0	0	0	0	0
SECURITY														
Security 24 C (2,000 h)	-	0	0	0	0	0	0	0	0	0	0	0	0	0
Security 36 C (3,000 h)	•	0	0	0	0	0	0	0	0	0	0	0	0	0
Security 48 C (4,000 h)	-	0	0	0	0	0	0	0	0	0	0	0	0	0
Security 60 C (5,000 h)	-	-	-	0	0	0	0	0	0	0	0	0	0	0

• Standard O Option - not suitable

EZIJE M O O ET16 MISCELLANEOUS VDS _ _ _ Outside rear-view mirrors --Rotating beacon \bigcirc _ _ LED boom work lights ullet-Front and rear work lights _ _ -Auto-stop ---Counterweight _ _ _ _ Diesel filling pump ----Automatic RPM speed control _ _ _ _ EquipCare 36 months (including app & manager) Drive signal -Piston rod protection _ _ -AWS Active Working Signal 5 _ _ _ _ - 0 Long dipper stick -Long dozer blade --_ _ _ - -Swiveling dozer blade -Rear-view camera _ -_ _ --Ξ Orange safety belt --Telescopic travel gear \bullet ٠ 0 ISO - SAE switch-over 0 KAT immobilizer system _ _ Rubber track* ulletSteel track* 0 _ _ _ ASSEMBLED ATTACHMENTS Easy Lock 0 -- 0 Easy Lock + Powertilt -_ _ 0 Easy Lock + Powertilt + load hook _ _ _ 0 Mechanical quick hitch system MS01 Hydraulic thumbs preparation _ -_ _ _ Hydraulic thumbs (complete WN) -_ _ Hydraulic quick hitch system 0 _ _ _ without load hook

• Standard O option - not suitable * different widths possible depending on the model ** available as of the second half of 2021

Lehnhoff hydraulic quick hitch system

Lehnhoff quick hitch system

+ Powertilt + load hook

+ load hook

Your excavators always within view: With EquipCare.

With our Telematics solution, EquipCare, you give your machines a voice. Machines equipped with the Telematics module actively report in, for example to inform you of upcoming maintenance or possible malfunctions. For these machines, our EquipCare Dual ID is also available as an option. This is an electronic access control. You can set exactly who can use your machines, and thus increase security on your construction site.

MINI-EXCAVATOR

EZ17	et18	ETZO	ET <mark>24</mark>	EZZ6	ET35	9EZ3	ET <mark>f</mark>	E Z BO	ET58
-	0	0	0	0	0	0	0	-	0**
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
•	•	•	•	•	•	•	•	•	•
0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	0	0	0
0	-	-	-	0	0	0	0	0	0
-	-	-	-	-	-	-	0	0	0
-	0	0	0	0	•	•	•	•	•
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	0	0	0
-	-	-	-	-	-	-	•	•	•
0	0	0	0	0	0	0	0	0	0
-	0	0	-	-	-	-	-	-	-
-	-	-	-	-	0	0	0	0	0
-	-	-	-	-	-	-	0	0	0
-	-	-	-	-	-	-	0	0	0
•	•	•	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
•	•	•	•	•	•	•	•	•	•
0	-	-	-	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	-	-	-
-	-	-	-	-	0	0	0	0	0
-	-	-	-	-	0	0	-	-	-
-	-	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

_

_

0

_

_

_

_

Dimensions

				EZIJe	803/ 803 duatpower	ET1 6	EZIJ	ETI <mark>B</mark>	ET 20	ET <mark>24</mark>	EZZ6	ET <mark>35</mark>	ez a 6	LT TT	0 N U U	ET <mark>5</mark> 8
		DIMENSIONS	UNIT													
	A	Height	mm	2,489	1,436 ⁽⁷⁾ , 2,261 ⁽⁶⁾	2,285	2,362	2,285	2,295	2,392	2,414	2,491/ 2,573*	2,491/ 2,573*	2,494	2,555	2,550
	в	Width of travel gear, retracted (track / tires)	mm	990	700, 860 ⁽⁵⁾	990, 1,300 ⁽⁵⁾	990, 1,300 ⁽⁵⁾	990, 1,300 ⁽⁵⁾	990, 1,300 ⁽⁵⁾	1,400	1,570	1,630	1,750	1,750	1,960	1,960
	с	Transport length (short dipper stick)	mm	3,584	2,747	3,644	3,584	3,854	4,049	4,022	4,266	5,268/ 5,252*	5,503/ 5,489*	5,146	5,467	5,455
	с	Transport length (long dipper stick)	mm	3,554	-	3,607	3,551	N/A	N/A	N/A	4,272	5,268/ 5,252*	5,503/ 5,489*	5,152	5,482	5,446
	D	Max. digging depth (short dipper stick)	mm	2,323	1,763	2,242	2,326	2,202	2,483	2,402	2,544	3,245/ 3,166*	3,247/ 3,172*	3,344	3,467	3,767
	D	Max. digging depth (long dipper stick)	mm	2,483	-	2,413	2,486	2,402	2,683	2,602	2,744	3,497/ 3,416*	3,497/ 3,422*	3,544	3,667	4,017
	Е	Max. vertical insertion depth (short dipper stick)	mm	1,710	1,320	1,642	1,713	1,415	1,660	1,562	1,962	2,120	2,123	2,114	2,085	2,708
	Е	Max. vertical insertion depth (long dipper stick)	mm	1,860	-	1,802	1,863	1,600	1,845	1,746	2,152	2,360	2,360	2,293	2,262	2,945
	F	Max. insertion height (short dipper stick)	mm	3,465	2,863	3,387	3,462	3,553(4)	3,929(4)	4,028(4)	4,300(4)	4,929	4,925	5,210	5,470	5,749
œ	F	Max. insertion height (long dipper stick)	mm	3,579	-	3,508	3,576	3,663(4)	4,052(4)	4,071(4)	4,430(4)	5,082	5,082	5,340	5,599	5,910
VATO	G	Max. dumping height (short dipper stick)	mm	2,439	2,012	2,371	2,436	2,510	2,713	2,748	2,840	3,337	3,336/ 3,411*	3,573	3,655	3,834
EXCA	G	Max. dumping height (long dipper stick)	mm	2,553	-	2,493	2,550	2,621	2,836	2,870	2,970	3,489	3,489/ 3,564*	3,703	3,784	3,995
-INIM	н	Max. digging radius (short dipper stick)	mm	3,900	3,090	3,700	3,899	3,802	4,129	4,146	4,613	5,270	5,298	5,489	5,916	6,039
	н	Max. digging radius (long dipper stick)	mm	4,050	-	3,861	4,050	3,989	4,317	4,334	4,805	5,507	5,582	5,678	6,150	6,277
	T	Max. reach at ground level (short dipper stick)	mm	3,848	3,028	3,648	3,848	3,700	4,031	4,020	4,481	5,158	5,391	5,376	5,794	5,920
	T	Max. reach at ground level (long dipper stick)	mm	4,001	-	3,811	4,002	3,894	4,225	4,216	4,681	5,408	5,641	5,570	5,988	6,164
	J	Min. tail swing radius	mm	660	747	1,075	660	1,169	1,169	1,169	759	1,168	933	1,335	1,047	1,312
	к	Max. boom offset to center of bucket (right/left)	mm	533/ 418	245/ 283	432/ 287	533/ 418	516/ 359	516/ 359	516/ 359	764/ 533	476/ 447	680/ 650	493/ 532	764/ 770	551/ 583
	L	Max. stacking height of the dozer blade above subgrade (short/long)	mm	271	197	211	271	198/ 281	216/ 299	294	380	393	393	418	410	414
	м	Max. scraping depth of the dozer blade above subgrade (short/long)	mm	390	264	264	390	316/ 381	297/ 362	334	419	505	505	563	443	439
	N	Total track length	mm	1,607	1,220	1,462	1,607	1,462	1,708	1,838	2,006	2,062	2,062	2,198	2,508	2,509
	0	Max. swing angle of arm system to the right	Deg- rees	57	56	49	57	48	48	48	50	55	45	55	55	55
	Ρ	Max. swing angle of arm system to the left	Deg- rees	65	55	73	65	77	77	77	75	70	70	70	70	70
	Q	Track/tire width	mm	230	180	230	230	230	250	250	300	300	300	350	400	400
	R	Boom swing radius, center	mm	1,635	1,085	1,195	1,627	1,584	1,666	1,666	2,080	2,008	2,245	2,175	2,505	2,409

Tracked excavators

⁽¹⁾ with articulated boom ⁽²⁾ with hybrid track ⁽³⁾ with steel track ⁽⁴⁾ with VDS ⁽⁵⁾ with telescopic travel gear ⁽⁶⁾ with roll-over protective structure ⁽⁷⁾ without roll-over protective structure * machine equipped with the VDS option

Lift capacity tables

803/803 dualpower

A MAX 2.5 m										2.0 m										1.5	m			1.0 m							
P		C	c		1	D		c	;			D			С			D		C	;		6)		c	;		C		
В	Blade	e up	Blade	Blade down		Telescopic travel gear extended		le up	Blade down		Telescopic travel gear extended		Blade up		Blade	down	Telescopi exte	c travel gear ended	Blac	le up	Blade	down	Telescopic exter	travel gear nded	Blac	ide up		Blade down		Telescopic travel gear extended	
																up to												up to		up to	
2.4 m	216	216*	216	216*	216	216*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
2.0 m	205	205*	205	205*	167	167	256	256	-	-	335	335*	318	318*	203	203*	318	318*	-	-	-	-	-	-	-	-	-	-	-	-	
1.5 m	163	163	191	191*	126	126	244	244	-	-	337	337	319	319	189	189*	439	439	438	438	-	-	567	567*	-	-	-	-	-	-	
1.0 m	142	142	177	177*	109	109	232	232	185	185*	324	324	296	296	217	217*	416	416	400	400	247	247*	569	569	600	600	-	-	883	883	
0.5 m	135	135	166	166*	103	103	-	-	184	184*	-	-	293	293	247	247*	412	412	397	397	366	366*	566	566	606	606	-	-	889	889	
0 m	137	137	155	155*	104	104	-	-	171	171*	-	-	-	-	247	247*	-	-	406	406	379	379*	575	575 [*]	619	619	678	678*	851	851*	
– 0.5 m	146	146*	146	146*	115	115	-	-	-	-	-	-	293	293	215	215*	412	412	397	397	325	325*	566	566	606	606	561	561*	889	889	
– 1.0 m	138	138 [*]	138	138*	138	138*	-	-	-	-	-	-	-	-	149	149*	-	-	406	406	343	343 [*]	575	575 [*]	619	619	418	418 [*]	851	851*	

EZ17e																														
Α	MAX							3.0) m					2.5 m						2.0) m					1.5	m			
	С				D		(c			C			с		1	D		(;		1	D		C	>		9)	
Б	Blad	le up	Blade	down	Telescopic trave	el gear extended	Blac	de up	Blade	e down	Telescopic trave	el gear extended	Blac	le up	Blade	down	Telescopic exte	travel gear nded	Blac	le up	Blade	down	Telescopic exte	travel gear Inded	Blad	e up	Blade	down	Telescopic exter	travel gear nded
		up to		up to								up to				up to		up to						up to		up to		up to		up to
2.5 m	280	320	422	462	264	302	-	-	-	-	-	-	325	329	365	457	306	310	-	-	-	-	-	-	-	-	-	-	-	-
2.0 m	222	245	419	455	209	231	240	240	411	411	226	226	326	329	352	420	308	310	-	-	-	-	-	-	-	-	-	-	-	-
1.0 m	179	194	394	423	168	182	231	232	458	478	218	218	309	310	534	575	291	291	438	443	668	761	410	414	-	-	-	-	-	-
0.0 m	175	190	369	392	165	179	219	221	479	483	206	2018	287	289	636	637	269	271	401	403	891	904	373	376	-	-	-	-	-	-
– 1.0 m	211	235	354	373	198	221	217	217	374	374	204	208	282	287	496	524	264	269	396	402	685	725	368	375	643	655	1,005	1,088	591	602
– 1.5 m	267	312	354	374	251	293	-	-	-	-	-	-	287	287	401	401	269	269	402	411	524	579	375	383	654	667	788	878	602	614

ЕТ1<mark>6</mark>

A			M	AX					3.0) m					2.0 m						1.0) m		
_		(c			D		(c		L C	C			с		C)		(>		C	þ
в	Blac	le up	Blade	down	Telescopic trave	el gear extended	Blac	le up	Blade	down	Telescopic trave	el gear extended	Blad		Blade	down	Telescopic exter	travel gear nded	Blac	le up	Blade	down	Telescopic exter	travel gear nded
												up to				up to								
1.5 m	163	222	336	365	158	293	181	225	344	366	175	297	315	397	315	397	315	397	-	-	-	-	-	-
1.0 m	150	205	325	350	146	272	177	222	360	372	171	293	332	406	500	561	309	531	-	-	-	-	-	-
0.5 m	145	199	314	337	141	265	171	217	370	373	166	289	311	385	635	658	292	513	-	-	-	-	-	-
0.0 m	147	203	304	325	143	271	167	214	353	360	162	286	298	373	652	657	280	500	-	-	-	-	-	-
– 0.5 m	157	219	296	315	153	292	165	209	323	323	160	281	292	370	588	608	275	497	975	1,226	1,480	1,708	801	1,708
– 1.0 m	181	256	291	309	175	309	-	-	-	-	-	-	292	372	492	522	275	493	984	1,231	1,336	1,504	809	1,504
– 1.5 m	240	313	294	313	228	313	-	-	-	_	-	-	299	373	344	397	281	397	-	-	-	-	-	-

ET17																														
А	MAX						3.0) m					2.5 m						2.0) m					1.5	m				
P	C			D		(C		ſ	C			С		1	D		(;		I)		c	>		[C		
В	Blad	Blade up Blade down Teles		Telescopic trav	el gear extended	Blac	de up	Blade	down	Telescopic trave	el gear extended	Blad	le up	Blade	down	Telescopic exte	travel gear nded	Blac	le up	Blade	down	Telescopic exte	travel gear nded	Blac	le up	Blade	down	Telescopic exter	travel gear nded	
																up to												up to		up to
2.5 m	238	299	434	474*	264	326	-	-	-	-	-	-	277	307	375	469*	306	334	-	-	-	-	-	-	-	-	-	-	-	-
2.0 m	186	228	431	468*	209	251	202	222	423	423*	226	245	279	307	362	431*	308	334	-	-	-	-	-	-	-	-	-	-	-	-
1.0 m	148	179	405	435*	168	199	194	215	471	491*	218	238	262	288	549	591*	287	291	374	413	686	781*	410	447	-	-	-	-	-	-
0.0 m	144	175	380	404*	165	196	182	204	493	497*	206	227	240	268	653	655*	269	296	336	374	916	929*	373	408	-	-	-	-	-	-
– 1.0 m	174	217	364	384*	198	241	179	200	385	385*	204	223	234	265	511	540*	264	293	331	373	705	745*	368	408	543	609	1,034	1,119*	591	653
– 1.5 m	223	289	365	386*	251	318	-	-	-	-	-	-	240	265	413	413*	269	293	338	381	540	596*	375	416	554	621	811	903*	602	664

All table values are given in kg in a horizontal position on a solid surface and without bucket.

Lift capacity tables

ET18

А	МАХ							3.0	m					2.5 m						2.0) m					1.5	m			
			c		C)		c	;			D			с		1	D		c			C	D		c	;		Ţ	D
В	Blade up		Blade	down	Telescop gear ex	ic travel tended	Blad	le up	Blade	down	Telesco gear e	pic travel xtended	Blad	le up	Blade	down	Telesco gear e	pic travel xtended	Blac	le up	Blade	down	Telescop gear ex	oic travel ktended	Blad	e up	Blade	down	Telescor gear e	oic travel xtended
		up to								up to												up to						up to		
2.5 m	196	313	341	382*	232	382	-	-	-	-	253	336*	253	344	304	366*	297	366*	-	-	-	-	-	-	-	-	-	-		-
2.0 m	163	258	346	385*	195	377	183	256	335	383*	218	383*	249	341	318	379*	293	379*	-	-	-	-	-	-	-	-	-	-		-
1.0 m	135	217	365	405*	165	394	171	247	392	430 [*]	206	374	226	320	448	507*	270	483	312	435	567	673*	370	663	-	-	-	-	- /	-
0.0 m	135	465	393	434*	166	344	159	237	454	466*	194	365	204	302	573	594*	248	465	275	406	793	816*	333	636	408	611	1,271	1,271*	494	993
– 1.0 m	169	286	426	464*	206	466*	-	-	-	-	-	-	201	303	541	472*	245	470	272	408	740	671 [*]	330	641	413	621	1,089	1,089*	498	956*
– 1.5 m	227	451	440	460*	274	460*	-	-	-	-	-	-	-	-	-	-	-	-	281	422	586	475*	339	475*	425	637*	851	851*	511	607*

ET20

Α	MAX							3.5	5 m					3.0 m						2.5	5 m					2.0	m			
-			с			D		c	;			D			с			D		c	c			D		c	;		D	
В	Blad	e up	Blade	down	Telesco gear e	pic travel extended	Blad	le up	Blade	down	Telesco gear e	pic travel extended	Blac	le up	Blade	down	Telesco gear e	pic travel extended	Blac	le up	Blade	down	Telesco gear e	pic travel xtended	Blac	le up	Blade	down	Telescop gear ex	ic travel tended
		up to								up to												up to						up to		
2.5 m	216	322	341	382*	213	355	-	-	-	-	-	-	253	317	325	385*	260	358	355	356 [*]	356	356*	310	356*	-	-	-	-	-	-
2.0 m	187	275	345	383*	189	304	-	-	-	-	196	196	250	316	338	378*	255	356	341	384*	341	394*	341	394*	-	-	-	-	467	467*
1.0 m	162	237	360	397*	170	263	180	240	375	399*	187	266	232	301	420	445*	237	341	308	389	502	548 [*]	308	442	429	533	675	754 [*]	419	608
0.0 m	165	241	382	420*	178	267	172	225	400	400*	180	251	216	287	336	501*	223	328	281	366	475	643*	286	420	388	496	872	889*	387	574
– 1.0 m	207	299	407	443*	231	332	_	-	-	-	-	-	215	276	437	451*	308	320	277	364	586	578 [*]	286	421	387	497	794	808*	390	578
– 1.5 m	271	391	416	442*	317	435	-	-	-	-	-	-	-	-	-	-	-	-	286	359	443	492*	401	418	397	508	648	679*	403	574

ET24

_																												_		
A	MAX						3.5	i m					3.0 m						2.5	5 m					2.0	m				
D			c		I	D		(;		1	D			с			D		(;		[)		C	;		D	
В	Blac	le up	Blade	down	Telesco gear e	pic travel extended	Blac	de up	Blade	down	Telesco gear e	pic travel xtended	Blac	le up	Blade	down	Telesco gear e	pic travel xtended	Blac	le up	Blade	down	Telescor gear e	pic travel ktended	Blac	le up	Blade	down	Telescopi gear ext	c travel ended
		up to								up to												up to						up to		
2.5 m	275	356	499	552*	255	440	-	-	-	-	-	-	321	364	533	547*	319	453	444	500	513	513*	428	535*	-	-	-	-	-	-
2.0 m	238	306	507	557*	230	383	-	-	-	-	261	350	308	362	536	552*	312	447	426	490	541	569*	415	588	-	-	-	-	583	713*
1.0 m	208	267	532	580*	210	341	224	271	572	584 [*]	231	344	293	344	627	657*	291	429	374	454	794	794 [*]	378	558	561	643	980	1,088*	516	775
0.0 m	213	276	566	615*	224	368	219	255	574	574 [*]	224	332	276	329	714	730*	276	417	365	428	910	932 [*]	355	535	516	600	1,272	1,285*	485	736
– 1.0 m	267	358	605	649*	300	518	-	-	-	-	-	-	277	320	618	618*	369	406	361	429	815	855*	358	544	516	605	1,098	1,147*	491	748
– 1.5 m	351	504	618	646*	434	618	-	-	-	-	-	-	-	-	-	-	-	-	371	427	664	664*	484	531	526	621	819	943*	485*	754

ET26																														
А	MAX D							3.5	5 m					3.0 m						2.5	m					2.0	m			
P		c	c			D		(c		C	D			с		1	D		C	>		I)		c	>		ç	b
	Blade	le up	Blade	down	Telescop gear ex	pic travel xtended	Blad	le up	Blade	down	Telescop gear e	pic travel xtended	Blad	le up	Blade		Telesco gear e	pic travel xtended	Blad		Blade	down	Telesco gear e	oic travel ktended	Blad		Blade	down	Telescop gear ex	ic travel ktended
		up to				up to		up to		up to		up to						up to		up to		up to				up to		up to		
3.0 m	356	497	470	521*	318	454	-	-	-	-	-	-	430	505 [*]	430	505*	402	495*	-	-	-	-	-	-	-	-	-	-	-	-
2.0 m	265	376	459	502*	236	345	335	431	462	508*	299	394	441	549*	486	549*	390	504*	597	628 [*]	603	628 [*]	528	628*	-	-	-	-	-	-
1.0 m	237	344	466	507*	210	315	314	411	541	573*	279	376	402	517	641*	690*	356	469	530	681	832	912 [*]	464	611	-	-	-	-	-	-
0 m	243	363	478	517*	215	331	297	399	587	597*	262	363	373	496	736*	750*	328	449	491	648	977	992 [*]	427	581	702	927	1,366	1,436*	599	815
– 1.0 m	299	417	482	512 [*]	264	428	-	-	-	-	-	-	370	502	579*	664*	324	455	488	656	783	875 [*]	425	588	821	944	1,044	1,199*	606	830

Lift capacity tables

ET35	35																							
А			м	AX					4.0) m					3.0) m					2.0) m		
			C			`		C	2						С			n		(2			`
	Blade up		Blade	down		, 	Blad	le up	Blade	down		, ,	Blac	le up	Blade	down			Blad	le up	Blade	down		
	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to
4.0 m	642	738*	642	738*	642	738*	-	-	-	-	-	-	555	698*	555	698*	555	698*	-	-	-	-	-	-
3.0 m	514	673	653	738*	556	716*	549	636	650	650 [*]	594	650*	537	654*	537	654*	537	654*	-	-	-	-	-	-
2.0 m	433	569	677	761*	469	623	539	740*	689	758 [*]	583	707	724	829*	724	829*	724	829*	1,065	1,106*	1,065	1,106*	1,065	1,106*
1.0 m	404	536	710	794*	438	588	516	831*	798	851*	560	687	786	936	809	1,108*	859	1,034	1,411	1,695	1,797	2,022*	1,582	1,900
0 m	411	553	748	835*	446	607	496	892*	891	920 [*]	540	672	741	901	767	1,292*	813	999	1,347	1,635	2,206	2,156*	1,515	1,858
– 1.0 m	462	641	790	877*	503	704	490	843*	881	881*	534	627	726	895	753	1,276*	797	992	1,341	1,644	2,042	2,028*	1,508	1,866
– 2.0 m	626	853*	816	886*	683	853*	-	-	-	-	-	-	740	896	771	982*	811	982*	1,371	1,585*	1,510	1,585*	1,510	1,585*

EZ <mark>36</mark>																								
А	MAX								4.0) m					3.0) m					2.0) m		
в		(C			_		(;						с					(c			
В	Blad	le up	Blade	down			Blad	le up	Blade	down			Blac	le up	Blade	down		,	Blad	le up	Blade	down		
		up to				up to						up to												up to
4.0 m	641	710*	651	710*	633	710*	-	-	-	-	-	-	646	679*	646	679*	646	679*	-	-	-	-	-	-
3.0 m	451	627	660	713*	444	621	531	604*	604	614*	524	604*	619	621*	619	621*	619	621*	-	-	-	-	-	-
2.0 m	380	533	684	736*	373	527	518	657	681	748*	510	650	728	858*	728	858*	728	858*	1,171	1,321*	1,171	1,321*	1,171	1,321*
1.0 m	353	503	716	769*	347	497	491	633	818	869*	483	627	752	949	1,097	1,203*	743	942	1,376	1,729	2,260	2,296*	1,365	1,724
0 m	358	518	755	810*	352	512	467	615	933	952*	460	609	703	912	1,361	1,392*	693	905	1,304	1,697	2,496	2,600*	1,292	1,691
– 1.0 m	402	596	798	849*	395	589	459	614	925	893*	451	608	687	907	1,384	1,363*	677	899	1,308	1,709	2,289	2,412*	1,296	1,704
– 2.0 m	539	849*	827	849*	530	849*	-	-	-	-	-	-	702	932	1,032	1,096*	692	925	1,342	1,713	1,661	1,889*	1,330	1,708

А	MAX							4.0) m					3.0) m					2.0) m					1.(0 m			
	c				_		(c			-			с			_		(c			_			с			D	
В	Blade up Blade down		down		D	Blac	de up	Blade	down		U	Blac	le up	Blade	down		J	Blac	le up	Blade	down		D	Blac	le up	Blade	down	Telesco gear e	pic trave xtended	
				up to														up to												
4.0 m	889	973*	889	973*	834	973 [*]	-	-	-	-	-	-	920	920*	920	920*	920	920*	-	-	-	-	-	-	-	-	-	-	-	-
3.0 m	662	848	864	930*	609	784	763	895	836	917*	702	828	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.0 m	577	724	873	935*	523	670	746	880	910	971*	685	813	1,054	1,155*	1,054	1,155*	1,054	1,155*	1,736	1,736*	1,736	1,736*	1,736	1,736*	-	-	-	-	-	-
1.0 m	536	685	896	957*	493	633	717	853	1,046	1,091*	656	786	1,117	1,292	1,427	1,508*	992	1,177	-	-	-	-	-	-	-	-	-	-	-	-
0 m	548	705	927	987*	504	651	692	832	1,145	1,165*	633	766	1,047	1,246	1,663	1,696*	942	1,133	2,035	2,372	3,025	3,065*	1,736	2,032	-	-	-	-	-	-
- 1,0 m	631	806	987	1,013*	568	743	685	831	1,067	1,102*	626	765	1,031	1,237	1,620	1,643*	942	1,125	2,005	2,385	2,666	2,788*	1,723	2,098	7,214	8,786	7,214	8,786*	7,214	8,78
- 2,0 m	840	980*	952	980*	764	980*	-	-	-	-	-	-	1,051	1,243	1,151	1,288*	946	1,151*	2,049	2,104*	2,104	2,104*	1,762	2,104*	6,050	6,050'	6,050	6,050*	6,050	6,05

ET42

А	MAX			AX					5.0) m					4.0) m					3.0	0 m					2.0) m		
	С				-		(C						С			_		(С					(c				
Б	Blade up Blade down		down		U	Blac	de up	Blade	down	.		Blac	le up	Blade	down		D	Blad	le up	Blade	down			Blad	le up	Blade	down		,	
				up to														up to												
4.0 m	852	1,058*	980	1,058*	778	1,037	-	-	-	-	-	-	891	959*	959	959*	813	959*	-	-	-	-	-	-	-	-	-	-	-	-
3.0 m	653	856	960	1,024*	599	780	-	-	-	-	-	-	885	1,008*	931	1,008*	808	971	-	-	-	-	-	-	-	-	-	-	-	-
2.0 m	572	748	971	1,031*	525	682	602	741	976	976*	553	675	856	1,046	1,084	1,149*	780	947	1,347	1,492*	1,359	1,492	1,203	1,450	-	-	-	-	-	-
1.0 m	544	715	996	1,055*	500	651	587	728	1,039	1,068*	538	663	819	1,005	1,293	1,341*	745	908	1,252	1,539	1,930	2,029	1,114	1,366	-	-	-	-	-	-
0 m	558	737	1,028	1,086*	512	670	-	-	1,065	1,065*	-	-	789	979	1,431	1,450*	716	883	1,203	1,488	2,197	2,218	1,074	1,318	-	-	-	-	-	-
- 1,0 m	678	837	1,111	1,111*	619	759	-	-	-	-	-	-	780	975	1,372	1,400*	707	879	1,194	1,486	2,063	2,116	1,059	1,316	2,452	3,058	3,475	3,747	2,046	2,568
- 2,0 m	935	1,074*	1,074	1,074*	845	1,031	-	-	-	-	-	-	-	-	-	-	-	-	1,216	1,515	1,520	1,669	1,080	1,344	2,425	2,775*	2,425	2,775	2,092	2,583

ET58	ET58																													
Α	МАХ						5.0 m				4.0 m				3.0 m						2.0 m									
	(с		_		с		C		- D -			с			2		C Blade up Blade down		D			C			D			
B	Blade up		Blade up Blade down				Blade up Blade down		down	Blad			e up	Blade down		, 	down				Blade	e up Blade down								
	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to	from	up to
4.0 m	1,042	1,180*	1,220	1,200*	923	1,016	-	-	-	-	-	-	1,168	1,168*	1,168	1,168*	1,034	1,168*	-	-	-	-	-	-	-	-	-	-	-	-
3.0 m	831	1,036	1,204	1,304*	738	927	-	-	-	-	-	-	1,161	1,295*	1,177	1,295*	1,027	1,170	-	-	-	-	-	-	-	-	-	-	-	-
2.0 m	741	918	1,216	1,311*	658	822	797	909	1,228	1,228*	707	813	1,126	1,279*	1,361	1,463*	993	1,138	1,661	1,850*	1,661	1,850*	1,524	1,742	-	-	-	-	-	-
1.0 m	711	881*	1,241	1,335*	630	788	779	901	1,306	1,355	690	806	1,081	1,238	1,600	1,678*	950	1,099	1,659	1,891	2,270	2,413*	1,430	1,648	-	-	-	-	-	-
0 m	729	908	1,273	1,365*	645	811	765	877	1,341	1,341*	676	782	1,047	1,210	1,762	1,800*	917	1,072	1,594	1,835	2,598	2,645*	1,368	1,597	-	-	-	-	-	-
- 1,0 m	808	1,021*	1,302	1,386*	714	909	-	-	-	-	-	-	1,034	1,203	1,716	1,743*	904	1,066	1,576	1,828	2,504	2,551*	1,351	1,590	3,208	3,729	4,032	4,306	2,588	3,076
- 2,0 m	1,024	1,345	1,296	1,348*	898	936	-	-	-	-	-	-	1,051	1,202	1,368	1,368*	921	1,063	1,595	1,855	1,957	2,126*	1,369	1,616	3,009	3,393*	3,009	3,393*	2,633	3,077

Meaning of abbreviations in tables A: Outreach from middle of rotating assembly

- B: Height of load hook
- MAX: Permissible load with extended shovel arm
 C: Dozer blade up or down, in travel direction
 D: Dozer blade up, superstructure 90 degrees to travel direction
- * Lift capacity limited by hydraulics

Actual lift capacity depends on the outfitting of the machine. You can find these in the respective operator's manual.

Technical data

			EZI7e	803	803 dualpower	ETIL	EZI7	ET18	ET20	ET24	EZ <mark>2</mark> 6	ET35	EZ <mark>3</mark> 6	ET42	EZ <mark>50</mark>	ET58
	GENERAL	UNIT														
Shippin	ng weight*	kg	1,681	930-992	955-1,015	1,402-1,602	1,595-1,822	1,582-2,060	1,862-2,182	2,057-2,401	2,469-3,161	3,365-4,276	3,530-4,446	3,817-4,609	4,617–5,454	4,817–5,630
Operati	ing weight	kg	1,797-2,152	1,029-1,089	1,052-1,112	1,529-1,720	1,724-1,950	1,725-2,203	2,005-2,324	2,200-2,544	2,571-3,262	3,555-4,466	3,720-4,636	4,032–4,824	4,847–5,685	5,052–5,890
Max. rij	pping force**	kN according to ISO 6015	9.1	4.5	4.5	7.9	9.1	11.2	12.5	15	15.3	21.1	21.1	20.8	23.6	28
Max. br	reak out force	kN according to ISO 6015	20.5	8.9	8.9	15.3	18.7	18.8	18.8	21.8	22.5	35	35	43.3***	36.8***	46***
	DRIVE	UNIT														
Manufa	acturer	-	DANA	Yanmar		Yanmar	Yanmar	Yanmar	Yanmar	Yanmar	Yanmar	Yanmar	Yanmar	Perkins diesel engine	Perkins diesel engine	Perkins diesel engine
Model		-	SRI150-21T48	3TNV70	Drive either with	3TNV76	3TNV76	3TNV76	3TNV76	3TNV76	3TNV76	3TNV88F-EPWN	3TNV88F-EPWN	403J-E17T	403J-E17T	403J-E17T
Design	system	-	Electric motor	Liquid-cooled, 3-cylinder diesel engine	installed diesel engine (compare 803) or electric motor in HPU8 power unit	Liquid-cooled, 3-cylinder Liquid-cooled, 3-cyl diesel engine			rlinder diesel engine		3-cylinder Yanmar diesel engine		Liquid-cooled, 3-cylinder turbo engine		10	
Displac	ement	cm ³	-	854		1,116	1,116	1,116	1,116	1,116	1,116	1,642	1,642	1,662	1,662	1,662
Drive o	utput	according to ISO kW/hp	16.5	9.9/13.3		13.8/18.5	13.8/18.5	13.8/18.5	13.8/18.5	13.8/18.5	15.8/21.5	18.2/24.4	18.2/24.4	36/48.2	36/48.2	36/48.2
Fuel tar	nk volume	1	-	7		24	22	24	24	24	36	44	44	80	80	80
Emissio	mission standard stage –		-	Stage V		Stage V						Stage V				
\mathbf{z}																
<u> </u>	HYDRAULICS	UNIT					_				1					
Hydrau	lic system / pumps	UNIT	Load-sensing hydraulic system/ 1 variable displacement pump	Summatio 2 gea	n regulation/ r pumps	LUDV with gear pump	Load-sensing hydraulics system / 1 variable displacement pump:	s 2 variable dis	Summation regulation splacement pumps, 2	n/ 2 gear pumps	Double variable pump, gear pump	2 axial pist 2 gear	on pumps/ pumps	Loa	d Sensing Flow Sha 1 axial piston pump	ring/
Hydrau Max. flo	lic system / pumps	UNIT - I/min	Load-sensing hydraulic system/ 1 variable displacement pump 39.6	Summatio 2 gea 10.7 + 10.7	n regulation/ r pumps 10.7+10.7	LUDV with gear pump 34.5	Load-sensing hydraulics system / 1 variable displacement pump: 39.6	5 2 variable dis 23.8+23.8 +19.1+6.5	Summation regulation splacement pumps, 2 23.8+23.8 +19.1+6.5	n/ 2 gear pumps 26.1+26.1 +19.4+6.4	Double variable pump, gear pump 30.5 + 30.5 + 20.2 + 7.2	2 axial pist 2 gear 42.5+42.5 23.8+11.3	on pumps/ pumps 42.5+42.5 23.8+11.3	Loa 90	d Sensing Flow Sha 1 axial piston pump 126	ring/ 132.3
Hydrau Max. flo Operati and tra	Iic system / pumps ow rate ing pressure for work vel hydraulics	UNIT - I/min bar	Load-sensing hydraulic system/ 1 variable displacement pump 39.6 240	Summatio 2 gea 10.7 + 10.7 170	n regulation/ r pumps 10.7 + 10.7 170	LUDV with gear pump 34.5 200	Load-sensing hydraulics system / 1 variable displacement pump: 39.6 240	2 variable dis 23.8+23.8 +19.1+6.5 200	Summation regulation placement pumps, 2 23.8+23.8 +19.1+6.5 200	n/ 2 gear pumps 26.1+26.1 +19.4+6.4 240	Double variable pump, gear pump 30.5 + 30.5 + 20.2 + 7.2 225	2 axial pist 2 gear 42.5+42.5 23.8+11.3 240	on pumps/ pumps 42.5+42.5 23.8+11.3 240	Loa 90 245	d Sensing Flow Sha 1 axial piston pump 126 245	ring/ 132.3 265
Hydrau Max. flo Operati and tra Operati gear	IIC system / pumps ow rate ing pressure for work vel hydraulics ing pressure for swing	UNIT - I/min bar bar	Load-sensing hydraulic system/ 1 variable displacement pump 39.6 240 160	Summatio 2 gea 10.7 + 10.7 170 70	n regulation/ r pumps 10.7 + 10.7 170 70	LUDV with gear pump 34.5 200 130	Load-sensing hydraulics system / 1 variable displacement pump: 39.6 240 150	2 variable dis 2 variable dis 23.8+23.8 +19.1+6.5 200 125	Summation regulation splacement pumps, 2 23.8+23.8 +19.1+6.5 200 150	1/ 2 gear pumps 26.1+26.1 +19.4+6.4 240 150	Double variable pump, gear pump 30.5 + 30.5 + 20.2 + 7.2 225 206	2 axial pist 2 gear 42.5+42.5 23.8+11.3 240 195	on pumps/ pumps 42.5+42.5 23.8+11.3 240 195	Loa 90 245 206	d Sensing Flow Sha 1 axial piston pump 126 245 209	ring/ 132.3 265 209
Hydrau Max. flo Operati and tra Operati gear Auxiliar max. di	IIC system / pumps ow rate ing pressure for work vel hydraulics ing pressure for swing ry hydraulics, ischarge volume	UNIT - I/min bar bar I/min	Load-sensing hydraulic system/ 1 variable displacement pump 39.6 240 160 5	Summatio 2 gea 10.7 + 10.7 170 70 22	n regulation/ r pumps 10.7 + 10.7 170 70 22	LUDV with gear pump 34.5 200 130 34	Load-sensing hydraulics system / 1 variable displacement pump: 39.6 240 150 36.1	2 variable dis 2 variable dis 23.8+23.8 +19.1+6.5 200 125 41.5	Summation regulation splacement pumps, 2 23.8+23.8 +19.1+6.5 200 150 41.5	2 gear pumps 26.1+26.1 +19.4+6.4 240 150 43	Double variable pump, gear pump 30.5 + 30.5 + 20.2 + 7.2 225 206 52.2	2 axial pist 2 gear 42.5+42.5 23.8+11.3 240 195 66.1	on pumps/ pumps 42.5+42.5 23.8+11.3 240 195 66.1	Loa 90 245 206 74	d Sensing Flow Sha 1 axial piston pump 126 245 209 73	ring/ 132.3 265 209 75
Hydrau Max. flo Operati and tra Operati gear Auxiliar max. di	Ilic system / pumps ow rate ing pressure for work vel hydraulics ing pressure for swing ry hydraulics, ischarge volume TRAVEL GEAR	UNIT - I/min bar bar I/min UNIT	Load-sensing hydraulic system/ 1 variable displacement pump 39.6 240 160 5	Summatio 2 gea 10.7 + 10.7 170 70 22	n regulation/ r pumps 10.7 + 10.7 170 70 22	LUDV with gear pump 34.5 200 130 34	Load-sensing hydraulics system / 1 variable displacement pump: 39.6 240 150 36.1	5 2 variable dis 23.8+23.8 +19.1+6.5 200 125 41.5	Summation regulation splacement pumps, 2 23.8+23.8 +19.1+6.5 200 150 41.5	n/ 2 gear pumps 26.1+26.1 +19.4+6.4 240 150 43	Double variable pump, gear pump 30.5 + 30.5 + 20.2 + 7.2 225 206 52.2	2 axial pist 2 gear 42.5+42.5 23.8+11.3 240 195 66.1	on pumps/ pumps 42.5+42.5 23.8+11.3 240 195 66.1	Loa 90 245 206 74	d Sensing Flow Sha 1 axial piston pump 126 245 209 73	ring/ 132.3 265 209 75
Hydrau Max. flo Operati and tra Operati gear Auxiliar max. di Ground	IIC system / pumps ow rate ing pressure for work vel hydraulics ing pressure for swing ry hydraulics, ischarge volume TRAVEL GEAR	UNIT - I/min bar bar I/min UNIT UNIT	Load-sensing hydraulic system/ 1 variable displacement pump 39.6 240 160 5	Summatio 2 gea 10.7 + 10.7 170 70 22 132	n regulation/ r pumps 10.7 + 10.7 170 70 22 132	LUDV with gear pump 34.5 200 130 34 34	Load-sensing hydraulics system / 1 variable displacement pump: 39.6 240 150 36.1	2 variable dis 2 variable dis 23.8+23.8 +19.1+6.5 200 125 41.5 210	Summation regulation splacement pumps, 2 23.8+23.8 +19.1+6.5 200 150 41.5 170	n/ 2 gear pumps 26.1+26.1 +19.4+6.4 240 150 43 295	Double variable pump, gear pump 30.5 + 30.5 + 20.2 + 7.2 225 206 52.2 207	2 axial pist 2 gear 42.5+42.5 23.8+11.3 240 195 66.1	on pumps/ pumps 42.5+42.5 23.8+11.3 240 195 66.1 251	Loa 90 245 206 74 300	d Sensing Flow Sha 1 axial piston pump 126 245 209 73 330	ring/ 132.3 265 209 75 330
Hydrau Max. flo Operati and tra Operati gear Auxiliar max. di Ground Max. tra	IIC system / pumps ow rate ing pressure for work vel hydraulics ing pressure for swing ry hydraulics, ischarge volume TRAVEL GEAR I clearance avel speed	UNIT - U/min bar bar UNIT UNIT MM km/h	Load-sensing hydraulic system/ 1 variable displacement pump 39.6 240 160 5 5	Summatio 2 gea 10.7 + 10.7 170 70 22 132 1.8	n regulation/ r pumps 10.7 + 10.7 170 70 22 132 1.8	LUDV with gear pump 34.5 200 130 34 34 180 4.1	Load-sensing hydraulics system / 1 variable displacement pump: 39.6 240 150 36.1 156 156 4.8	2 variable dis 2 variable dis 23.8+23.8 +19.1+6.5 200 125 41.5 210 5.3	Summation regulation splacement pumps, 2 23.8+23.8 +19.1+6.5 200 150 41.5 170 4.1	2 gear pumps 26.1+26.1 +19.4+6.4 240 150 43 295 4	Double variable pump, gear pump 30.5 + 30.5 + 20.2 + 7.2 225 206 52.2 206 52.2 277 3.8	2 axial pist 2 gear 42.5+42.5 23.8+11.3 240 195 66.1 251 2.7/4.7	on pumps/ pumps 42.5+42.5 23.8+11.3 240 195 66.1 251 2.7/4.7	Loa 90 245 206 74 300 4.8	d Sensing Flow Sha 1 axial piston pump 126 245 209 73 330 4.8	ring/ 132.3 265 209 75 330 4.4
Hydrau Max. flo Operati and tra Operati gear Auxiliar max. di Ground Max. tra Ground	IIC system / pumps ow rate ing pressure for work vel hydraulics ing pressure for swing ry hydraulics, ischarge volume TRAVEL GEAR I clearance avel speed I pressure of basic te	UNIT - I/min bar bar I/min UNIT UNIT MM km/h kg/cm ²	Load-sensing hydraulic system/ 1 variable displacement pump 39.6 240 160 5 - 4.8 -	Summatio 2 gea 10.7 + 10.7 170 70 22 132 1.8 0.25	n regulation/ r pumps 10.7 + 10.7 170 70 22 132 1.8 0.25	LUDV with gear pump 34.5 200 130 34 34 180 4.1 0.26	Load-sensing hydraulics system / 1 variable displacement pump: 39.6 240 150 36.1 156 4.8 0.28	2 variable dis 2 variable dis 23.8+23.8 +19.1+6.5 200 125 41.5 210 5.3 0.30	Summation regulation splacement pumps, 2 23.8+23.8 +19.1+6.5 200 150 41.5 170 4.1 0.28	n/ 2 gear pumps 26.1+26.1 +19.4+6.4 240 150 43 295 4 0.29	Double variable pump, gear pump 30.5 + 30.5 + 20.2 + 7.2 225 206 52.2 206 52.2 207 3.8 0.27	2 axial pist 2 gear 42.5+42.5 23.8+11.3 240 195 66.1 251 2.7/4.7 0.36-0.46	on pumps/ pumps 42.5+42.5 23.8+11.3 240 195 66.1 251 2.7/4.7 0.36-0.46	Loa 90 245 206 74 300 4.8 0.3–0.38	d Sensing Flow Sha 1 axial piston pump 126 245 209 73 330 4.8 0.27-0.31	ring/ 132.3 265 209 75 330 4.4 0.28-0.34
Hydrau Max. flo Operati and tra Operati gear Auxiliar max. di Ground Max. tra Ground	HYDRAULICS lic system / pumps ow rate ing pressure for work vel hydraulics ing pressure for swing ry hydraulics, ischarge volume TRAVEL GEAR d clearance avel speed d pressure of basic le NOISE EMISSIONS	UNIT - I/min bar bar I/min UNIT MM km/h kg/cm ² UNIT	Load-sensing hydraulic system/ 1 variable displacement pump 39.6 240 160 5 5 - 4.8 -	Summatio 2 gea 10.7+10.7 170 70 22 132 1.8 0.25	n regulation/ r pumps 10.7 + 10.7 170 70 22 132 1.8 0.25	LUDV with gear pump 34.5 200 130 34 34 180 4.1 0.26	Load-sensing hydraulics system / 1 variable displacement pump: 39.6 240 150 36.1 150 36.1	2 variable dis 2 variable dis 23.8+23.8 +19.1+6.5 200 125 41.5 210 5.3 0.30	Summation regulation splacement pumps, 2 23.8+23.8 +19.1+6.5 200 150 41.5 170 4.1 0.28	2 gear pumps 2 26.1+26.1 +19.4+6.4 240 150 43 295 4 0.29	Double variable pump, gear pump 30.5 + 30.5 + 20.2 + 7.2 225 206 52.2 207 3.8 0.27	2 axial pist 2 gear 42.5+42.5 23.8+11.3 240 195 66.1 251 2.7/4.7 0.36-0.46	on pumps/ pumps 42.5+42.5 23.8+11.3 240 195 66.1 251 2.7/4.7 0.36-0.46	Loa 90 245 206 74 300 4.8 0.3–0.38	d Sensing Flow Sha 1 axial piston pump 126 245 209 73 330 4.8 0.27–0.31	ring/ 132.3 265 209 75 330 4.4 0.28–0.34
Hydrau Max. flo Operati and tra Operati gear Auxiliar max. di Ground Max. tra Ground machin	IIC system / pumps ow rate ing pressure for work vel hydraulics ing pressure for swing ry hydraulics, ischarge volume TRAVEL GEAR I clearance avel speed d pressure of basic te NOISE EMISSIONS power level (L _m)	UNIT - U/min bar bar U/min UNIT UNIT UNIT UNIT UNIT dBA acc. to 2000/14/EC	Load-sensing hydraulic system/ 1 variable displacement pump 39.6 240 160 5 	Summatio 2 gea 10.7 + 10.7 170 22 22 132 1.8 0.25 93	n regulation/ r pumps 10.7 + 10.7 170 22 132 1.8 0.25 93	LUDV with gear pump 34.5 200 130 34 34 180 4.1 0.26 93	Load-sensing hydraulics system / 1 variable displacement pump: 39.6 240 150 36.1 156 4.8 0.28 93	2 variable dis 2 variable dis 23.8+23.8 +19.1+6.5 200 125 41.5 210 5.3 0.30 93	Summation regulation splacement pumps, 2 23.8 + 23.8 + 19.1 + 6.5 200 150 41.5 170 4.1 0.28 93	2 gear pumps 2 26.1+26.1 +19.4+6.4 240 150 43 295 4 0.29 93	Double variable pump, gear pump 30.5 + 30.5 + 20.2 + 7.2 225 206 52.2 206 52.2 207 3.8 0.27	2 axial pist 2 gear 42.5+42.5 23.8+11.3 240 195 66.1 251 2.7/4.7 0.36-0.46	on pumps/ pumps 42.5+42.5 23.8+11.3 240 195 66.1 251 2.7/4.7 0.36-0.46 94	Loa 90 245 206 74 300 4.8 0.3–0.38	d Sensing Flow Sha 1 axial piston pump 126 245 209 73 330 4.8 0.27–0.31	ring/ 132.3 265 209 75 330 4.4 0.28-0.34 97

* Basic machine + 10% fuel tank capacity ** Short dipper stick *** dipper stick blade (ISO 6015), bolted on + HighPower backhoe

Ω	MODEL	LENGTH	WIDTH	HEIGHT	WEIGHT	ENGINE	OUTPUT	VOLTAGE	CURRENT CONSUMPTION	HYDRAULIC PUMP DELIVERY RATE	OPERATING
	HPU <mark>8</mark>	930 mm	720 mm	1,000 mm	192 kg including hydraulic oil	3-phase electric motor	7.5 kW	400 V	16 A	20 V/min	210

All information relates to the base machine. Subject to changes.

The Wacker Neuson product range includes over 300 different product series with different versions. The product data may vary accordingly with the selection of different options. Not all Wacker Neuson products listed or shown here are however available or allowed in all countries. The Wacker Neuson products shown are examples and as such are subject to changes. We are happy to make you a specific offer upon request!

Reproduction only with the written approval of Wacker Neuson.

© Wacker Neuson SE

VOLTA	E CURRENT CONSUMPTI	ON HYDR/	ULIC PUMP DELIVERY RATE	OPERATING PRESSURE	HYDRAULIC OIL TANK CAPACITY	HYDRAULIC HOSE LENGTH				
400 \	/ 16 A		20 l/min	210 bar	9.6	12 m				
					EZI7e					
			UNIT							
R.	Battery voltage		v		48					
Ē	Nominal capacity/po	ower	kWh		23.4					
BA	Charging time 110 V	/230 V/400 V	h	15/7.5/4						
	Running time		h		7.5*					
	Engine		kW		16.5 kW					

* Running time varies depending on the type of application

Your everyday work day is full of challenges. We have the right solutions and help you to stay ahead of the competition. We offer you everything you need for this purpose: Wacker Neuson-all it takes!

Financial solutions Uncomplicated, transparent and individual financing options for you.

Repair & Academy maintenance We expand Excellent and fast maintenance.

and within an

ideal learning

environment.

Repairs with

original spare

parts.

Everything about your know-how: the machines practice-oriented at a glance, via app or PC -EquipCare.

Rental Protect your liquidity and rent top-maintained

construction

equipment as

needed.

E-Store Concrete specialists Buy original spare Our specialists parts online conveniently - for advise you in all project stages. all Wacker Neuson product groups.

Every minute counts: Within the shortest period of time, we deliver over 150,000 genuine

Wacker Neuson spare parts

to your construction site.

In LinkedIn Wacker Neuson Group